Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant methionine sulfoxide reductase A and B multigenic families.

Identifieur interne : 003D49 ( Main/Exploration ); précédent : 003D48; suivant : 003D50

Plant methionine sulfoxide reductase A and B multigenic families.

Auteurs : Nicolas Rouhier [France] ; Christina Vieira Dos Santos ; Lionel Tarrago ; Pascal Rey

Source :

RBID : pubmed:17031545

Descripteurs français

English descriptors

Abstract

Methionine oxidation to methionine sulfoxide (MetSo), which results in modification of activity and conformation for many proteins, is reversed by an enzyme present in most organisms and termed as methionine sulfoxide reductase (MSR). On the basis of substrate stereospecificity, two types of MSR, A and B, that do not share any sequence similarity, have been identified. In the present review, we first compare the multigenic MSR families in the three plant species for which the genome is fully sequenced: Arabidopsis thaliana, Oryza sativa, and Populus trichocarpa. The MSR gene content is larger in A. thaliana (five MSRAs and nine MSRBs) compared to P. trichocarpa (five MSRAs and four MSRBs) and O. sativa (four MSRAs and three MSRBs). A complete classification based on gene structure, sequence identity, position of conserved reactive cysteines and predicted subcellular localization is proposed. On the basis of in silico and experimental data originating mainly from Arabidopsis, we report that some MSR genes display organ-specific expression patterns and that those encoding plastidic MSRs are highly expressed in photosynthetic organs. We also show that the expression of numerous MSR genes is enhanced by environmental conditions known to generate oxidative stress. Thioredoxins (TRXs) constitute very likely physiological electron donors to plant MSR proteins for the catalysis of MetSO reduction, but the specificity between the numerous TRXs and methionine sulfoxide reductases (MSRs) present in plants remains to be investigated. The essential role of plant MSRs in protection against oxidative damage has been recently demonstrated on transgenic Arabidopsis plants modified in the content of cytosolic or plastidic MSRA.

DOI: 10.1007/s11120-006-9097-1
PubMed: 17031545


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant methionine sulfoxide reductase A and B multigenic families.</title>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<affiliation wicri:level="4">
<nlm:affiliation>IFR 110, Génomique Ecologie et Ecophysiologie Fonctionnelles, Unité Mixte de Recherches 1136 Interaction arbres microorganismes INRA Université Henri Poincaré, BP 239, Vandoeuvre-lès-Nancy Cedex, 54506, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IFR 110, Génomique Ecologie et Ecophysiologie Fonctionnelles, Unité Mixte de Recherches 1136 Interaction arbres microorganismes INRA Université Henri Poincaré, BP 239, Vandoeuvre-lès-Nancy Cedex, 54506</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="university">Université Henri Poincaré</orgName>
</affiliation>
</author>
<author>
<name sortKey="Vieira Dos Santos, Christina" sort="Vieira Dos Santos, Christina" uniqKey="Vieira Dos Santos C" first="Christina" last="Vieira Dos Santos">Christina Vieira Dos Santos</name>
</author>
<author>
<name sortKey="Tarrago, Lionel" sort="Tarrago, Lionel" uniqKey="Tarrago L" first="Lionel" last="Tarrago">Lionel Tarrago</name>
</author>
<author>
<name sortKey="Rey, Pascal" sort="Rey, Pascal" uniqKey="Rey P" first="Pascal" last="Rey">Pascal Rey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:17031545</idno>
<idno type="pmid">17031545</idno>
<idno type="doi">10.1007/s11120-006-9097-1</idno>
<idno type="wicri:Area/Main/Corpus">003D10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003D10</idno>
<idno type="wicri:Area/Main/Curation">003D10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003D10</idno>
<idno type="wicri:Area/Main/Exploration">003D10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant methionine sulfoxide reductase A and B multigenic families.</title>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<affiliation wicri:level="4">
<nlm:affiliation>IFR 110, Génomique Ecologie et Ecophysiologie Fonctionnelles, Unité Mixte de Recherches 1136 Interaction arbres microorganismes INRA Université Henri Poincaré, BP 239, Vandoeuvre-lès-Nancy Cedex, 54506, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IFR 110, Génomique Ecologie et Ecophysiologie Fonctionnelles, Unité Mixte de Recherches 1136 Interaction arbres microorganismes INRA Université Henri Poincaré, BP 239, Vandoeuvre-lès-Nancy Cedex, 54506</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="university">Université Henri Poincaré</orgName>
</affiliation>
</author>
<author>
<name sortKey="Vieira Dos Santos, Christina" sort="Vieira Dos Santos, Christina" uniqKey="Vieira Dos Santos C" first="Christina" last="Vieira Dos Santos">Christina Vieira Dos Santos</name>
</author>
<author>
<name sortKey="Tarrago, Lionel" sort="Tarrago, Lionel" uniqKey="Tarrago L" first="Lionel" last="Tarrago">Lionel Tarrago</name>
</author>
<author>
<name sortKey="Rey, Pascal" sort="Rey, Pascal" uniqKey="Rey P" first="Pascal" last="Rey">Pascal Rey</name>
</author>
</analytic>
<series>
<title level="j">Photosynthesis research</title>
<idno type="ISSN">0166-8595</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Methionine Sulfoxide Reductases (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Plants (enzymology)</term>
<term>Plants (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Famille multigénique (MeSH)</term>
<term>Methionine Sulfoxide Reductases (MeSH)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Plantes (enzymologie)</term>
<term>Plantes (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Methionine Sulfoxide Reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Multigene Family</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Famille multigénique</term>
<term>Methionine Sulfoxide Reductases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Methionine oxidation to methionine sulfoxide (MetSo), which results in modification of activity and conformation for many proteins, is reversed by an enzyme present in most organisms and termed as methionine sulfoxide reductase (MSR). On the basis of substrate stereospecificity, two types of MSR, A and B, that do not share any sequence similarity, have been identified. In the present review, we first compare the multigenic MSR families in the three plant species for which the genome is fully sequenced: Arabidopsis thaliana, Oryza sativa, and Populus trichocarpa. The MSR gene content is larger in A. thaliana (five MSRAs and nine MSRBs) compared to P. trichocarpa (five MSRAs and four MSRBs) and O. sativa (four MSRAs and three MSRBs). A complete classification based on gene structure, sequence identity, position of conserved reactive cysteines and predicted subcellular localization is proposed. On the basis of in silico and experimental data originating mainly from Arabidopsis, we report that some MSR genes display organ-specific expression patterns and that those encoding plastidic MSRs are highly expressed in photosynthetic organs. We also show that the expression of numerous MSR genes is enhanced by environmental conditions known to generate oxidative stress. Thioredoxins (TRXs) constitute very likely physiological electron donors to plant MSR proteins for the catalysis of MetSO reduction, but the specificity between the numerous TRXs and methionine sulfoxide reductases (MSRs) present in plants remains to be investigated. The essential role of plant MSRs in protection against oxidative damage has been recently demonstrated on transgenic Arabidopsis plants modified in the content of cytosolic or plastidic MSRA.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17031545</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0166-8595</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>89</Volume>
<Issue>2-3</Issue>
<PubDate>
<Year>2006</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Photosynthesis research</Title>
<ISOAbbreviation>Photosynth Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant methionine sulfoxide reductase A and B multigenic families.</ArticleTitle>
<Pagination>
<MedlinePgn>247-62</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Methionine oxidation to methionine sulfoxide (MetSo), which results in modification of activity and conformation for many proteins, is reversed by an enzyme present in most organisms and termed as methionine sulfoxide reductase (MSR). On the basis of substrate stereospecificity, two types of MSR, A and B, that do not share any sequence similarity, have been identified. In the present review, we first compare the multigenic MSR families in the three plant species for which the genome is fully sequenced: Arabidopsis thaliana, Oryza sativa, and Populus trichocarpa. The MSR gene content is larger in A. thaliana (five MSRAs and nine MSRBs) compared to P. trichocarpa (five MSRAs and four MSRBs) and O. sativa (four MSRAs and three MSRBs). A complete classification based on gene structure, sequence identity, position of conserved reactive cysteines and predicted subcellular localization is proposed. On the basis of in silico and experimental data originating mainly from Arabidopsis, we report that some MSR genes display organ-specific expression patterns and that those encoding plastidic MSRs are highly expressed in photosynthetic organs. We also show that the expression of numerous MSR genes is enhanced by environmental conditions known to generate oxidative stress. Thioredoxins (TRXs) constitute very likely physiological electron donors to plant MSR proteins for the catalysis of MetSO reduction, but the specificity between the numerous TRXs and methionine sulfoxide reductases (MSRs) present in plants remains to be investigated. The essential role of plant MSRs in protection against oxidative damage has been recently demonstrated on transgenic Arabidopsis plants modified in the content of cytosolic or plastidic MSRA.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>IFR 110, Génomique Ecologie et Ecophysiologie Fonctionnelles, Unité Mixte de Recherches 1136 Interaction arbres microorganismes INRA Université Henri Poincaré, BP 239, Vandoeuvre-lès-Nancy Cedex, 54506, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vieira Dos Santos</LastName>
<ForeName>Christina</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tarrago</LastName>
<ForeName>Lionel</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rey</LastName>
<ForeName>Pascal</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>09</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Photosynth Res</MedlineTA>
<NlmUniqueID>100954728</NlmUniqueID>
<ISSNLinking>0166-8595</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.-</RegistryNumber>
<NameOfSubstance UI="D051150">Methionine Sulfoxide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.11</RegistryNumber>
<NameOfSubstance UI="C027219">methionine sulfoxide reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D051150" MajorTopicYN="N">Methionine Sulfoxide Reductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>53</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>08</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17031545</ArticleId>
<ArticleId IdType="doi">10.1007/s11120-006-9097-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 2004 Mar;15(3):1055-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2005 Jun;1043:284-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16037250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1335-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Feb 11;467(2-3):245-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10675547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Jan;13(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9680968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Nov;73(3):619-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14071-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9826655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jul 15;21(14):3681-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12110581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):191-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Apr;78(4):2155-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7017726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Sep;4(9):2696-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15352244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 1999 Oct;73(4):1660-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10501213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 28;276(52):48915-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11677230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9585-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9275166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Dec 18;555(3):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 May;123(1):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 25;101(21):7999-8004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):419-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Feb;177(3):502-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7836279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2621-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2005 Jan;62(1):24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15619004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(11):1266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):121-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 1;280(13):12344-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15668226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jul;11(7):329-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11867705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Mar;29(5):545-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11874568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1998 Mar;74(3):1115-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9512014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Apr;220(6):941-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15843963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2002 Jan 15;397(2):172-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11795868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Apr;16(4):908-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15031406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12145281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2002 Jul;267(5):613-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3784-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):93-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Aug;10(2):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8771781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):231-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1417-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2002 Jun;16(8):911-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12039877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;347:394-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11898430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2002 May-Jun;234-235(1-2):3-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12162447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10268-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(1):31-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610347</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<orgName>
<li>Université Henri Poincaré</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Rey, Pascal" sort="Rey, Pascal" uniqKey="Rey P" first="Pascal" last="Rey">Pascal Rey</name>
<name sortKey="Tarrago, Lionel" sort="Tarrago, Lionel" uniqKey="Tarrago L" first="Lionel" last="Tarrago">Lionel Tarrago</name>
<name sortKey="Vieira Dos Santos, Christina" sort="Vieira Dos Santos, Christina" uniqKey="Vieira Dos Santos C" first="Christina" last="Vieira Dos Santos">Christina Vieira Dos Santos</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003D49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17031545
   |texte=   Plant methionine sulfoxide reductase A and B multigenic families.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17031545" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020